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In problems of mathematical physics. instead of investigating an 

ideally elastic model it is sometimes necessary to analyze some others 

which take into account the imperfections of real materials. When so 

doing, it is possible to meet the demands of practice without leaving 

the realm of linear problems. Such problems, for instance, are those 

of theoretical seismology concerning the propagation of vibrations 

from a source (explosion), which fit to a high degree of accuracy 

into the realm of linear processes. 

1. Stress-strain relations. Equations of motion. For the 

sake of brevity, a symbolic notation for the relations, the meaning of 

which is obvious, will be adopted. let the relations between the stresses 

u and the strains c be given as follows: 

G = ki: + IT,: (1.1) 

where k is an elastic constant, and K, is some linear operator (either a 
differential operator with respect to time with constant coefficients, 
or a Volterra type integral operator with respect to time with a diffe- 

rential kernel ). Relations (1.11, in the case of an isotropic and homo- 
geneous body which will be investigated here, are characterized by two 

elastic constants h, p (Lame constants) and an operator K,, which will 

appear in the relations with different constant coefficients X’, p’* 
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Furthermore, it is also assumed that 

I$’ Qj=:-_: _ =-IL’_ -- 
). ILL 

This is a restriction of the method presented below. 

(1.2) 

‘Ihe introduction of additional terms into Hooke’s law according to 
(1.1) takes into account, to some extent, the dissipation of energy in 
particle oscillations in real materials. 

‘Iherefore, it will be assumed that (1.1) describes a material with 
dissipation of energy. In this paper such a material will be called a 
D-medium. 

The equations of motion in terms of displacements can be written in a 
form analogous to Lame’s form for the ideally elastic medium, replacing 
the elastic constants A, p by linear (with respect to time) operators: 

A = h f %'Kf , .!I = [l + E*‘Kt (4 3) 

?hen the equations of motion of the D-medium become: 

(A + 2M) grad div u - M rot rot u = p 2; (1.4) 

where u = u (x, y, z, t) is the displacement vector written in the 
Cartesian coordinate system (x, y, t f. 

bations (1.4) can be rewritten in a different form assuming the 
interchangeability of the operations K, and differentiation with respect 
to the coordinates, and applying condition (1.2): 

a‘% 
(1, + 2~) grad div (1 + wKt) u - p rot rot (If wKt) u = p -8iz (1.3 

I.et the displacement vector u be represented in the usual way by the 
SUNI 

u=gradrp+rot$ (1.6) 

where Q, is a scalar and +!J the vector potential of the displacement field. 
Then (1.5) can be replaced by an equivalent*system of equations in terms 
of the unknown functions sf, (~,y,t,t) and $ fx,y,t, t): 

(1.7) 
(1 + wKt) A+ = G2 

+ The representation of u in the form (1.6) is correct within the order 
of accuracy of the Laplace vector. It is in this sense that the equi- 

valence of (1.5) and (1.7) is understood. 
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Here a and b are the reciprocals of the velocities of propagation of 
longitudinal and transverse waves in an elastic medium, respectively. By 
analogy to the classical theory of elasticity and for the sake of con- 
venience equations (1.7) will be called “wave equations” below. 

The symbolic relation (l.l), or, rhat is the same. the equations of 
motion (1.5) characterize almost every model of the nonideal theory of 
elasticity that was proposed until the present time. Actually the latter 
equations can be divided into two groups: 

(a) The first group is characterized by a differential operator Kt, 

which is linear and has constant coefficients; to this group belong the 
visco-elastic medium -- the Voigt model [ 1 1 -- and the medium with 
dissipation of energy -- the Newlands model [Z 1. 

(b) The second group is characterized by an integral operator K, of 
the Volterra type with a differential kernel: to this group belong the 
model of a medium with an elastic after effect -- the Boltzmann model 
c31 -- and the model of a medium with relaxation (Maxwell [ 4 ] ). which 
actually is contained in the Boltzmann model. These two groups fit 
completely into the general class of problems examined in this paper. 

Since it is not possible to give in a short article a complete survey 
of work devoted to the investigation of the above mentioned definite 
models (of group (a) and (b) ), only a few papers will be noted here. In 
the article by Thompson 15 1 an account of the history of the problem is 
given, and the general derivation (on the basis of thermodynamic con- 
siderations) of the equations of motion of the visco-elastic medium and 
the medium with an elastic after effect is shown. The studies of Ricker 
[ 6 1 and Voit [ 7 1 are devoted to the analysis of nonstationary processes 
in an infinite visco-elastic medium, described by one wave equation (1.7). 
with the assumption that the operator is Kt G d/at. 

Dynamic problems for a medium with an elastic after effect 
studied by Gogoladze [ 8 ] and Deriagin [ 8 1. In this case the 
K, was determined in the following way: 

K,f (E) = s h (t -7) f (7) ds 

Here h(t) is an after effect function, and f(~,y,t, t) is a 
of the class from which the operator was determined. 

were 
operator 

(1.8) 

function 

The second remark refers to the above mentioned restrictions (condi- 
tion (1.2) and the presence of only one operator K, in (1.1) ). 

The following path of research, evidently, appears to be appropriate 
in the investigation of dynamic problems for the D-medium. Inasmuch as 
it is not clear beforehand what operators Kt and parameters h’, ,u’ should 



404 E.I. Shesiakin 

actually be chosen it is above all necessary to attempt to obtain a 
solution for a wide class of operators, and at least for a few A’, p’ 
(for example, for those which are subject to (1.2). which is equivalent 
to the introduction of a parameter o ). Subsequently, the qualitative 
laws characterizing the features of the wave propagation in D-media for 
specific K, (for instance, K, = d/dt or (1.8) ) should be experimentally 
verified: and only then it is necessary to go into the accurate investi- 
gation of the constructed solutions. From this point of view the 
restrictions mentioned, do not have such an artificial character as 
they seemed to have at the beginning. 

2. Formulation of the nonstationary problems for non- 
ideally elastic media. The following problem will be studied. Let 
U be scme region occupied by the D-medium and bounded by the surface S. 

The oscillations of particles of this body under the action of forces 

applied on its surface at time t = 0 will be studied, Assume that the 

medium is at rest at t < 0, and that the disturbances are produced by 

the application of the following stresses on the surface S: 

T 1=&W Is, T a = L? (4 Is, T3 = La (u) !s (2.1) 

Here L,, L,, L, are the usual linear operators in Hooke’s law, with 

the difference that A, p are replaced by A and M according to foxwulas 
(1.31, and the functions T18 Tz, T3 are:* 

Ti = fi (z, yt 2) IS Q (t) (i = 1, 2, 3) (2.2) 

The functions ai describe the dependence of the reactions Ti on 

time (in particular, a;(t) can be the symbolic Dirac function s(t), or 

the Heaviside unit function t(t); fi(x,y,zl/S describe the space distri- 
bution of the reaction (in the particular problems introduced below the 

fi studied will be the function 6(r)/r). 

?hs * it is necessary to find u(r,y,z, t) from the equations of motion 
(1.4) with zero initial conditions 

u Lo = 0, du/dt It+ = 0 (2.3) 

and boundary conditions (2.1). 

Note that because of the linearity of the problem (and for the sake 

of brevity) the equations will be studied separately for the following 

boundary conditions: 

* The notation fi(x,y,-z)/S denotes that the variables .z, y, E are related 
by the equation F(x,y, L) = 0 of the surface S. 
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1) T,#O, Tz=T8= 0 

2) T,#O> T, = T, = 0 (2.4) 

3) T3#0, T,=T2= 0 

One of these problems, for example the first one, will be studied 
more extensively. All discussions can then be simply applied also to 
problems 2 and 3 of (2.4). Problem (1.4) - (2.3) - (2.1) for fr’, E 0 and 
with t replaced by z will be called the first auxiliary problem. 

Thus, the solution of the nonstationary problem of the elastic medium, 
where the boundary reactions are given as before in the form (2.2) and all 
ai are replaced by Sk 1, will serve as an auxiliary solution. 

The following one-dimensional problem will be studied as the second 
auxiliary problem: 

K’ I 3H 

1=-o = -& j fiZO = 
0, (1 $_w~*)R(t, 417=0=a(t) (2.5) 

adores. ‘Ihe solution of problem (1.4) - (2.3) - (2.1) is given by 
the formula 

where uO(x,y,z,r ) is the solution of the first auxiliary problem, and 
Rft,r) is the solution of problem (2.5). 

Proof. Substituting u(~,y,z,t) in form (2.6) into the equation of 
motion (1.5) and allowing for the possibility of repeated integration 
with respect to the coordinates under the integral sign yields 

0) . 
I (1 + o&j fi (6 4 I@ + 2~) grad div u. (c y, z, T) - 
0 

m avi (t *) 
- prot rot uo (3, y, 2, q1 ch = p \ &; -uo (z, y, 2, T) dz 

0 

Inasmuch as I+, appears as the solution of the auxiliary problem (i.e. 
satisfies the Lame equations) then 
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Use the equality 

which is obtained by integrating twice by parts. 

In addition, it was necessary to assume that the following conditions 
(of the type of the radiation condition) be satisfied: 

(2.8) 

‘Ihe last conditions are usually automatically satisfied in the 
problems at hand. Then utr,y,z,t) satisfies (1.5) by virtue of the equa- 
tion for R(t,r 1. 

The initial conditions for tr(rrytz,t) represented in the form (2.6) 
are satisfied because of the zero initial conditions for R( t,r 1. In 
verifying the boundary conditions one starts from the fact that the 
basic problem is divided into three problems according to (2.41, and 
only the solution for the first of them is to be verified. Substitute 
u(x,y,z, t) in the form (2.6) into (2.1). Assuming that it is proper to 
carry out the operation L, under the integral on T, the following 
expression for the first of the boundary conditions is obtained: 

fl (5, y, 2) Isa(t) = 1 L, [uo (x, y, 2, r)l Is(l -1.- wKl)Ii(t? T:)dT (2*(-3) 
0 

If one considers that 

JL [ull(r, Y, -i’T q1 Is = I1 (? Y, 2) Is 6 (7) 

(see the first auxiliary problem), then (2.9) is obviously satisfied by 
virtue of the boundary condition for R( t ,z ) at r = 0 and for an arbitrary 
f1 (x,y,z l/s. In an analogous fashion also the boundary conditions of 
problems 2 and 3 of (2.4) can be verified. Thus the basic theorem is 
proved. 

Reaark 1. The solution nO(x, y, Z,I ) for many interesting problems of 

the dynamic theory of elasticity can be formed either by the method of 

functional-invariant solutions of Smirnov and Sobolev [lo 1. or by the 

method of the incomplete separation of variables, proposed by Smirnov 

[ 11 1 and developed by Petrashen’ [ 12, 13 1 . 

In such a way, for instance, solutions were formed for the elastic 

half-space under nonstationary boundary point loads 113, 14 1, for 

layerwise-isotropic media with parallel-plane separation boundaries 115 3, 

and for media with spherical or cylindrical separation boundaries [ 16 1. 
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Remark 2. It is necessary to show a method of forming and analyzing the 
function R(t,r), which will be done in the following paragraph, in order 
to consider the solution of these problems u(x,y, z, t) as being determined. 

In the same fashion the basic formula (2.6) allows the construction of 
solutions of the boundary value problems, mentioned in the first remark, 

also for a D-medium (with some restrictions on the operator K, of the same 
type as before). In this sense the basic formula contains the general 
qualitative result on the construction of solutions of dynamic problems 
for D-media with the aid of already known solutions uq(x,y,z,r) and some 
spepial functions R( t,7 ). 

3. The Functions R( t ,r 1. Let us study problem (2.5). E3y virtue 
of the zero initial conditions of the problem the solution can be sought 
in the form 

5’ R, (s, T) es% 
a--ice 

(Res=a>O) 

and the application of the operator K, to R(t,r ) leads to the formula 

o+ico 

KfR (t, T) = & \ R, (S, T) K(S) @‘ds (K(s) = r e-“Kf 6 (t) dt) (3.1) 
a--ice 0 

Without dwelling on elementary calculations connected with the find- 
ing of Rq(s,r ) form problem (2.51, the final result is iuznediately 
written as follows: 

O+iao A (s) 
R (t, T) = 2; \ 

1 + UK (4 exp (St - 1’f ,“iK @) d.9 > (3 4 
o--ial 

(44 =r a(t) e-stdt 
1 

0 

Here K(s) comes from (3.1), and the contour of integration is the 

straight line Re s = > 0, parallel to the imaginary axis in the plane of 

the complex variable s; the branch cut of the radical d l+ II) K(s) is 

fixed by the condition 

arev/ +&C(s)= 0 for s>O 

l’he solution can be verified by direct substitution of (3.2) into 

(2.5), where it is necessary to take into account relation (3.1). Men 

doing so, it is not necessary to consider the question of the 

appropriateness of differentiating under a contour integral and going 

to the limit in the verification of the initial and boundary conditions 

inasmuch as all those operations are proper from the point of view of 
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the theory of generalized functions, with which these problems deal. 

Application of Borel's theorem to (3.2) yields 

lhen 

From 
R&r 1 

R 6, 
t 

T) = s a (h) Rs (t - t,, 2) dT 
0 

also (2.6) can be rewritten as 
t Q) 
P rr 7 

u(2, y, 2, t) = \a (11) 11 no@, Y, a, ~1 &(t- 11, 2) d+& (3.3) 
0 0 

the latter it obviously follows that the study of the function 
is of basic interest: 

C?+icp 

%(t, ~1 = h \ ' 1. +wK(s)exp ( St -yl+s:K(s) ds > 
(3.4) 

a-is, 

Note, first of all, that R&(t,r I+ 8(t - t 1 as o+ 0. Then, in the 
limit o = 0, formula (3.3) gives the solution of the elastic problem 
uO(x,y,z,t) with a load that varies with time as a(t). 

In particular, if a sufficiently smooth function is chosen for a(t), 

then the classical sense of the limit solutions as well as the limiting 
process o + 0 itself can be justified. 

Note the essential property of the integrand in R(t,r). Ibe expression 
1 + o K(s) (and with it also the entire integral in (3.2) ) does not have 
any singularities in the right hand half-plane of the complex variable s, 
including the imaginary axis. For the integral operators K, this follows 
directly from certain inequalities obtained from energy considerations; 
for the differential operators R, this is in most cases an obvious fact. 

Using this feature of the integrand in (3.4) the integral Ra(t,s) can 
be given a real representation in the form of a Fourier integral. For 
this purpose it is necessary to deform the contour of integration 
Re s = u > 0 into the imaginary axis and change the variable of integra- 
tion in (3.4): s = iA. Ihen 

'lhe presence of the factor 8 in the integrand and the item 9 in the 
cosine expression indicates dsmping and dispersion with the propagation 
of disturbances in R-media. 
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4. Ihe solution of the nonstationary problea for the vim 
elastic half-space. In this case the operator is K, = 13/h, and as I 
consequence equations (1.5) and the boundary conditions are simplified. 

?Ihe solution u(r,t),z,t) of equation (1.5) with zero initial condi- 
tions (2.3) and concentrated loading on the boundary is to be found* in 
the half-space z> 0, filled with a visco-elastic material. The statemen 
on the boundary conditions implies that at t = 0 at the point r = 0 the 
following functions are given: 

a) Tzz q&(t), T,, = O(r = jGqj& ( 
axissmmetric 

loading ) (~4.~1 

b) T,, = ya (t)t 
non-symmetric 

Tzz = TW = 0 (tangential loading) (4.2) 

In the case of the visco-elastic material the second auxiliary 
function has the form:** 

a+icu 

w* T) = & 1 -!-- l+OS 
exp st ( 

U--ia, 
-es ds, - 

> Res = a>0 (4.3) 

In order to obtain the solution of the given problem according to the 
basic formula (2.4), it is necessary to know u~(~,~~z,f). 'Ihe latter cam 
be obtained, for instance, by a formal differentiation with respect to 
t of the solutions of the dynamics problems for the elastic half-space 
t13, 14 1. 

In the case of an axisymnetric leading (4.1) oO(r,O,z,r) has the forr 

uo = uorro + uozk 

(4.4) 

- 2 Y$jc;rca g (1, C)] dC} kJ, (kr) dk 

g(7, C) = exp[lc (C$--2 1/l + 72C2)] 
__ 

* For considerations of convenience the cylindrical coordinate system 

(r,e. t) related to the Cartesian coordinate system (x,y,z) by the 

usual transformation formulas is chosen. 

**An analogous integral was studied by numerical methods in the paper 

bs Zverev 119 I. 



410 E. I. Shcriakin 

where 

T = -, l Ma = )fl + yc2, Mb=)fTp 

R (C) = (2 + C”)” - 4M,Mb, ReC= a>0 (4.5) 

argM,=argMb=O for s>O 

The solution of the problem with boundary condition (4.2) has an 
analogous representation I 14 1 . 

Consider briefly some physical consequences of the obtained solutions. 
For this purpose lQ(r,~,Z,r) and R(t,r ) will be analyzed separately, and 
the product of these functions will be integrated. As a result of this, 
according to the basic formula (2.61, a representation of the behavior 
of the solution of the problem u(r,8,z,t) will be obtained. For the sake 
of brevity only an isolated typical expression, which is a part in the 
description of the displacement field, will be investigated here. 

At first U0 (r,6),z,r ) is to be analyzed. If one uses the asymptotic 
methods of analysis (for large 7 1 of the elastic problem, as shown in 
[ 12, 13 1 , then one can give the following representation of the main 
parts of the displacement field, characterizing volumetric waves. 

The term 

(4.6) 
0 o--200 

taken from (4.4) (from the u component) characterizes the singularity 
* of the solution in the neig h&hood of the surface r 2 = b2(F2 + z* > and 

has there the following principal part: 

(4.7) 

All remaining terms from (4.4) can be analyzed in a similar fashion, 
In addition one can also investigate in the usual way the surface waves 
and conical waves, only that the latter will subsequently require a 
numerical integration. Of main interest are, however, the volumetric 
(longitudinal and transverse) waves described with the aid of (4.7). For 
a complete description of the volumetric waves it is necessary to carry 
out the integration with respect to r of the results (4.7) with a func- 
tion Rs (t ,r ) corresponding to the basic formula. If it is assumed that a 
simple integration formula for S@) can be derived 
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? 

I f(t, T, 8, 2)6[i(T)]dT= f(Tn* ry e* z, 5 (%) = 0 
5’1%) 

(E<T*<8) (4.8) 
d 

then the final result for the reduced component displacement field can 
be represented in the following way: the component (axisymnetric reaction) 

(4.9) 

In this fashion everything is reduced to the analysis of the function 
R(t,r ) lor Ra(t,z, )I according to (3.31, where r = adr2 + z2 in the case 
of longitudinal waves, and r = bgr2 + z2 in the case of transverse waves. 

As was shown at the end of Section 3, the integral R3 (t ,r ) can be re- 
presented as a Fourier integral 

IQ) 
Rs (1, 4 = x s ( exp -- F sinf)con [,(i! --&cm z)- rp]$ 

0 
P \ r/p 

(4.10) 

p=+fw, cp=arctgoh 

lhe dsmping and dispersion of waves in the stationary region are 
characterized, respectively, by the functions 

(4.11) 

If the values of r are substituted (for the longitudinal and transverse 
waves separately) into (4.11), then the damping and the dispersion cau 
be coqared for longitudinal and transverse waves. 

The approximate expressions of the functions (4.11) are to be studied. 
For oh < 1 we obtain exp (-X A20r ) in first approximation the damping 
and no dispersion (the latter indicates that for frequencies A < 0-l the 
dispersion appears as an effect of a higher order in comparison to the 
damping). For OX > 1 the danping and the dispersion are of the smne 
order. Au experimental determination of the magnitude of o, as an indica- 
tion of the qualitative bound on the frequency scale, can serve as a check 
on the usefulness of the model analyzed for the description of dynamic 
processes in real materials. 

‘lhe function R3 (t,r ) can be also expressed in an approximate fashion 

(4.12) 
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‘lhe last representation is convenient for the study of nonstationary 
phenomena. Actually, (4.12) indicates* the following effects: (1) at a 
fixed point in space, the maximum disturbance is reached at t = r , i.e. 
in a visco-elastic material the disturbances propagate with the velocities 
l/a and l/b, respectively; (2) for impulsive loads the wave is dome- 
shaped, and the more sharply defined (for fixed T > the smaller the para- 
meter 0; (3) the shape of the wave acquires a more and more “washed out” 
character with distance (the “diffusion” is proportional to the square 
root of the distance travelled by the maximum disturbance); (4) there is 
additional damping of waves because of dissipation of energy, which is 
indicated by the presence of the factor (o7)'t in (4.12). 

‘Ihe experimental study of the gradual change of shape of a wave of one 
type can indicate a method for determining the magnitude of o for real 
materials. 

Finally, note that if the condition (1.2) is removed and an additional 
notation is introduced 

h’ + 2g 
WI = ~ 

A+% 

then the formulas for the principal parts of (4.9) should be changed only 
for the longitudinal waves by the replacement of Rg(t,r > by 

1 
ofice 

&p@, 4=y*; s 1 
- 1 -f ws 

e.up (st - 

e-k0 
1/l y 

- ds 
) 

(4.13) 
01s 

Note also that from physical considerations oi < o (this corresponds 
also to experimental data). 

5. Solution of the nonstationary problem for a half-space 
occupied by a medium with an elastic after-effect. In this 
case the operator K, is determined, as shown in Section 1 by 
the relation (1.9). The function h(t - 7 > is unknown. It is necessary to 
determine it from experimental data on physical characteristics of propa- 
gation of waves in real materials. Here one can proceed in two ways: Qne 

can assume beforehand a definite form for h(t - r), find the solution of 
the problem, and then by conparing with experimental data choose a suit- 
able h( t - r ). A second way will be chosen here, however; namely, leaving 
hft - r) unknown, the following simple conditions will be imposed on it: 

(a) h(t, r 1 E h(t - r) (V. Volterra) 

(b) h(t) is a positive and decreasing function as t + - (5.1) 

(c) +2(t)&<l 

0 

l It should be noted that in (4.12) r should be replaced by ad? + z* 
for longitudinal waves and by bdr* + z* for tranaveree waves. 
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(the last inequality was obtained by Gogoladze [8 I from the condi- 
tion that the potential energy of deformation in the material analyzed 
here is positive). 

In this paragraph it is pointed out that it is in principle possible 
to determine h(t) from experimental data on the propagation of waves. 

'lke only difference between the solution of the problem for the half- 
space occupied by a material with an elastic after effect and the problem 
of Section 4 consists in the fact that in the basic formula (2.61, which 
gives the solution to the problem, the u,,(r,19,z,r) is to be taken from 
(4.4), and for Ri(t,r) one should have 

Rl (t, 4 = & \ A (4 ( ST 

1 - oH (sf exp st - vi - wN (s) 
ids (5.2) 

o--i00 

Here A(s) comes from (3.2) 

Res=cs>O, arg VI - WH (s) = 0 for s>O 

H(s) = f/z (t)eVSf dt 
0 

Analyze closer the following function: 

a+iw 

Rls(t, T) = ;- \ -L__.._. 
ST 

l-df(s)exp ) 
ds (5.3) 

o-its 
st -1/t __ff(s) 

'lhe integrand in (5.3) is regular in the right-hand half-plane of the 
compex variable s, including the imaginary axis, The latter is true by 
virtue of the inequality 

GW)\<~ (5.4) 

which follows from conditions fb) and fcf on h(t) in (5.1). Then the 
previous method of analysis can be applied to (5.3) by reducing the 
problem to the Fourier integral. As a result of simple transformations 
one obtains 

p&*x = l-wH(ih)=l-cwl+#v, (H (ix) = Ul - iv1) 

By virtue of the inequality (5.4) the integral in (5.5) can be given 
the following approximate representation: 
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Tbe quantities exp( -% h o rvr f and !4 orul, can be determined experi- 
mentally, and hence u,( X ) and u1 ( h 1 will be known, after which one can 
use the following relation for finding h(t) 

l’be latter was obtained from the Mellin inversion forvnula for H(s) by 
going over to the Fourier integral (which is correct because of the in- 
equality (5.4) 1. 

Concinsioa. 

First, the method of the incomplete separation of variables was used 
in the construction of the solutions of specific problems in Sections 4 
and 5 where the system of “wave” equations (1.7) served as the basis. 
The subsequent application of the transformation of Efros El8 1 facilitat- 
ed the derivation of the basic formula (2.6) for the solutions obtained. 
Further generalizations, for the class of problems for D-media shown 
above, as well as for other nonstationary boundary value problems (for 
layered isotropic D-media with plane parallel separation boundaries; for 
regions occupied by the D-medium and having spherical or cylindrical 
separation boundaries) were obtained with the aid of a basic formula. 
Some restrictions on the operator Kt, characterizing the D-medium, of the 
type shown in the main text of the article as well as taking results from 
[ 15. 16 f as auxiliary material for the construction of u9(r,y,z,t 1 in 
corresponding problems, was all that was necessary for this generaliza- 
tion. 

Note also that if the above mentioned restrictions are removed, one 
can construct a solution by the method of incomplete separation of vari- 
ables for the enumerated problems in the case of D-media, with the 
difference that then a direct analysis appears to be difficult. In some 
simple problems (for instance, for a half-space occupied by a D-medium) 
the analysis can be performed with the aid of the generalization of the 
Efros transformation and a symptotic method of analyzing disturbance 
fields. In partic’ular, formula (4.13) was obtained in just this way. 
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